Testing different classification methods in airborne hyperspectral imagery processing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm) remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were reco...

متن کامل

Detection and Classification of Plant Species through Spectir Airborne Hyperspectral Imagery in Clark County, Nevada

The non-native Saltcedar (Tamarix ramosissima Ledeb.) and the native Honey mesquite (Prosopis Glandulosa Torr.), exist in abundance in Clark County, NV. We are using remote sensing to measure changes in distribution and abundance of these species. We collected six strips of 1m-resolution SpecTIR hyperspectral images in Clark County on May, 2005. SpecTIR has 227 spectral bands ranging from 0.45 ...

متن کامل

Unsupervised classification strategy utilizing an endmember extraction technique for airborne hyperspectral remotely sensed imagery

Remote sensing has become an important source of urban land-use/cover classification, and as a result of their high spatial and spectral resolution, airborne hyperspectral images have been widely used to distinguish different urban classes. However, the previous studies into the classification of urban environments have mainly focused on a supervised scenario, which is limited by the selection ...

متن کامل

Semi-Supervised Based Hyperspectral Imagery Classification

Hyperspectral imagery classification is a challenging problem. Wherein, the high number of spectral channels and the high cost of true sample labeling greatly reduce the classification precision. In this paper, we proposed a semi-supervised method, which combine linear discriminant analysis and manifold learning, to improve the precision of hyperspectral imagery classification. Experimental res...

متن کامل

Anomaly detection and classification for hyperspectral imagery

Anomaly detection becomes increasingly important in hyperspectral image analysis, since hyperspectral imagers can now uncover many material substances which were previously unresolved by multispectral sensors. Two types of anomaly detection are of interest and considered in this paper. One was previously developed by Reed and Yu to detect targets whose signatures are distinct from their surroun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optics Express

سال: 2016

ISSN: 1094-4087

DOI: 10.1364/oe.24.00a956